Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Helicobacter ; 29(2): e13075, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38627919

RESUMO

BACKGROUND: The current standard treatment for Helicobacter pylori infection, which involves a combination of two broad-spectrum antibiotics, faces significant challenges due to its detrimental impact on the gut microbiota and the emergence of drug-resistant strains. This underscores the urgent requirement for the development of novel anti-H. pylori drugs. Zoliflodacin, a novel bacterial gyrase inhibitor, is currently undergoing global phase III clinical trials for treating uncomplicated Neisseria gonorrhoeae. However, there is no available data regarding its activity against H. pylori. MATERIALS AND METHODS: We evaluated the in vitro activity of zoliflodacin against H. pylori clinical isolates (n = 123) with diverse multidrug resistance. We performed DNA gyrase supercoiling and microscale thermophoresis assays to identify the target of zoliflodacin in H. pylori. We analyzed 2262 H. pylori whole genome sequences to identify Asp424Asn and Lys445Asn mutations in DNA gyrase subunit B (GyrB) that are associated with zoliflodacin resistance. RESULTS: Zoliflodacin exhibits potent activity against all tested isolates, with minimal inhibitory concentration (MIC) values ranging from 0.008 to 1 µg/mL (MIC50: 0.125 µg/mL; MIC90: 0.25 µg/mL). Importantly, there was no evidence of cross-resistance to any of the four first-line antibiotics commonly used against H. pylori. We identified GyrB as the primary target of zoliflodacin, with Asp424Asn or Lys445Asn substitutions conferring resistance. Screening of 2262 available H. pylori genomes for the two mutations revealed only one clinical isolate carrying Asp424Asn substitution. CONCLUSION: These findings support the potential of zoliflodacin as a promising candidate for H. pylori treatment, warranting further development and evaluation.


Assuntos
Barbitúricos , Infecções por Helicobacter , Helicobacter pylori , Isoxazóis , Morfolinas , Oxazolidinonas , Compostos de Espiro , Humanos , Antibacterianos/farmacologia , DNA Girase/genética , Farmacorresistência Bacteriana , Infecções por Helicobacter/tratamento farmacológico , Infecções por Helicobacter/microbiologia , Testes de Sensibilidade Microbiana , Ensaios Clínicos Fase III como Assunto
3.
Antimicrob Agents Chemother ; : e0031424, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38656185

RESUMO

Currently, Helicobacter pylori eradication by antibiotic therapy faces various challenges, including antibiotic resistance, side effects on intestinal commensal bacteria, and patient compliance. In this study, loureirin A (LrA), a traditional Chinese medicine monomer extracted from Sanguis Draconis flavones, was found to possess specific antibacterial activity against H. pylori without the bacteria displaying a tendency to develop resistance in vitro. LrA demonstrated a synergistic or additive effect when combined with omeprazole (a proton pump inhibitor) against H. pylori. The combination of LrA and omeprazole showed promising anti-H. pylori potential, exhibiting notable in vivo efficacy comparable to standard triple therapy in mouse models infected with both drug-sensitive and drug-resistant H. pylori strains. Moreover, the narrow-spectrum antibacterial profile of LrA is reflected in its minimal effect on the diversity and composition of the mouse gut microbiota. The underlying mechanism of action of LrA against H. pylori involves the generation of bactericidal levels of reactive oxygen species, resulting in apoptosis-like cell death. These findings indicate that LrA is a promising lead compound targeting H. pylori without harming the commensal bacteria.

4.
Nat Prod Res ; : 1-7, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38586937

RESUMO

A phytochemical investigation of the aerial parts of Mitracarpus hirtus afforded thirteen compounds, including a new naphthoquinone di-glycoside (1), three isopentenyl isoflavones (2-4), four flavonoids (5-8), three iridoid glycosides (9 - 11) and two coumarins (12 and 13). Their structures were elucidated based on extensive spectroscopic analyses, chemical methods, and the comparison with the literature. Among them, compound 1 possesses a 2-(3-methylnaphthalen-2-yl)acetic acid core with two glucosyl groups, compounds 2-4 are the first three representatives from the Rubiaceae family, and compounds 9-11 and 13 were isolated from Mitracarpus genus for the first time. Additionally, compounds 2-4 displayed potent antibacterial activities against Helicobacter pylori G27/HP159/JRES00015 (MIC = 4-16 µg/mL) , comparable to metronidazole. To date, wighteone (2) is the most active isoflavone with favourable predicted ADMET properties reported against H. pylori.

5.
J Med Chem ; 67(6): 4757-4781, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38466654

RESUMO

The high lethality of Staphylococcus aureus infections and the emergence of antibiotic resistance make the development of new antibiotics urgent. Our previous work identified a hit compound h1 (AF-353) as a novel Mycobacterium tuberculosis (Mtb) dihydrofolate reductase (DHFR) inhibitor. Herein, we analyzed the antimicrobial profile of h1 and performed a comprehensive structure-activity relationship (SAR) assay based on h1. The representative compound j9 exhibited potent antibacterial activity against S. aureus without cross-resistance to other antimicrobial classes. Multiple genetic and biochemical approaches showed that j9 directly binds to SaDHFR, resulting in strong inhibition of its enzymatic activity (IC50 = 0.97 nM). Additionally, j9 had an acceptable in vivo safety profile and oral bioavailability (F = 40.7%) and also showed favorable efficacy in a mouse model of methicillin-resistant S. aureus (MRSA) skin infection. Collectively, these findings identified j9 as a novel SaDHFR inhibitor with the potential to combat drug-resistant S. aureus infections.


Assuntos
Antagonistas do Ácido Fólico , Staphylococcus aureus Resistente à Meticilina , Éteres Fenílicos , Pirimidinas , Infecções Estafilocócicas , Animais , Camundongos , Staphylococcus aureus , Antagonistas do Ácido Fólico/farmacologia , Antibacterianos/química , Infecções Estafilocócicas/tratamento farmacológico , Testes de Sensibilidade Microbiana
6.
Antimicrob Agents Chemother ; 68(1): e0113123, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38018962

RESUMO

Opportunistic fungal infections, particularly caused by Candida albicans, remain a common cause of high morbidity and mortality in immunocompromised patients. The escalating prevalence of antifungal drug resistance necessitates the immediate exploration of alternative treatment strategies to combat these life-threatening fungal diseases. In this study, we investigated the antifungal efficacy of firsocostat, a human acetyl-CoA carboxylase (ACC) inhibitor, against C. albicans. Firsocostat alone displayed moderate antifungal activity, while combining it with voriconazole, itraconazole, or amphotericin B exhibited synergistic effects across almost all drug-sensitive and drug-resistant C. albicans strains tested. These observed synergies were further validated in two mouse models of oropharyngeal and systemic candidiasis, where the combination therapies demonstrated superior fungicidal effects compared to monotherapy. Moreover, firsocostat was shown to directly bind to C. albicans ACC and inhibit its enzymatic activity. Sequencing spontaneous firsocostat-resistant mutants revealed mutations mapping to C. albicans ACC, confirming that firsocostat has retained its target in C. albicans. Overall, our findings suggest that repurposing firsocostat, either alone or in combination with other antifungal agents, holds promising potential in the development of antifungal drugs and the treatment of candidiasis.


Assuntos
Antifúngicos , Candidíase , Animais , Camundongos , Humanos , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Acetil-CoA Carboxilase , Reposicionamento de Medicamentos , Testes de Sensibilidade Microbiana , Candidíase/tratamento farmacológico , Candidíase/microbiologia , Candida albicans , Farmacorresistência Fúngica , Fluconazol/farmacologia
7.
Appl Microbiol Biotechnol ; 107(21): 6607-6619, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37642717

RESUMO

Six new citrinin derivatives (1, 2, 4, 10, 11, and 16), along with fourteen known analogues, were acquired from Penicillium sp. TW131-64, a marine-derived fungus strain. The chemical structures of new compounds were identified through adopting various spectroscopic methods in combination with X-ray diffraction technology and comparison of the experimental electronic circular dichroism (ECD) with calculated ones. Among them, compounds 1-4 were nitrogen-containing citrinin derivatives existing in enantiomers which were resolved by chiral chromatography. A putative biosynthetic pathway for compounds 1-4 was proposed. Additionally, the antimicrobial activities of these compounds were detected by the broth microdilution assays. Citrinin derivatives 1, 2, 4 and their corresponding enantiomers (1a, 2a, 4a, 1b, 2b, and 4b) exhibited potent antimicrobial activities towards Helicobacter pylori standard strains and multidrug-resistant strains (MIC values ranging from 0.25 to 8 µg/mL), which were comparable or even better than metronidazole. Moreover, compounds 1a and 1b also showed remarkable broad antimicrobial effects towards Staphylococcus aureus, Enterococcus faecalis, methicillin-resistant Staphylococcus aureus (MRSA), Bacillus subtilis, vancomycin-resistant Enterococcus faecium (VRE), and Candida albicans. In summary, our studies demonstrated that citrinin enantiomers 1a-4a and 1b-4b, especially 1a and 1b, can be lead compounds in the research and development (R & D) of novel antimicrobial drugs. KEY POINTS: • 3 novel nitrogen-containing citrinin derivatives (1, 2, 4) were isolated. • citrinin derivatives 1-4 in enantiomers were resolved by chiral chromatography. • citrinin derivatives 1a and 1b showed broad and significant antimicrobial effects.


Assuntos
Anti-Infecciosos , Citrinina , Staphylococcus aureus Resistente à Meticilina , Penicillium , Citrinina/farmacologia , Antibacterianos/química , Fungos , Anti-Infecciosos/farmacologia , Nitrogênio/farmacologia , Testes de Sensibilidade Microbiana , Estrutura Molecular
8.
Sci Adv ; 9(31): eadg5995, 2023 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-37540745

RESUMO

Staphylococcus aureus poses a severe public health problem as one of the vital causative agents of healthcare- and community-acquired infections. There is a globally urgent need for new drugs with a novel mode of action (MoA) to combat S. aureus biofilms and persisters that tolerate antibiotic treatment. We demonstrate that a benzonaphthopyranone glycoside, chrysomycin A (ChryA), is a rapid bactericide that is highly active against S. aureus persisters, robustly eradicates biofilms in vitro, and shows a sustainable killing efficacy in vivo. ChryA was suggested to target multiple critical cellular processes. A wide range of genetic and biochemical approaches showed that ChryA directly binds to GlmU and DapD, involved in the biosynthetic pathways for the cell wall peptidoglycan and lysine precursors, respectively, and inhibits the acetyltransferase activities by competition with their mutual substrate acetyl-CoA. Our study provides an effective antimicrobial strategy combining multiple MoAs onto a single small molecule for treatments of S. aureus persistent infections.


Assuntos
Infecções Estafilocócicas , Staphylococcus aureus , Humanos , Aminoglicosídeos/farmacologia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Infecções Estafilocócicas/tratamento farmacológico , Biofilmes
9.
Mar Life Sci Technol ; 5(2): 232-241, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37275544

RESUMO

Metabolites of microorganisms have long been considered as potential sources for drug discovery. In this study, five new depsidone derivatives, talaronins A-E (1-5) and three new xanthone derivatives, talaronins F-H (6-8), together with 16 known compounds (9-24), were isolated from the ethyl acetate extract of the mangrove-derived fungus Talaromyces species WHUF0362. The structures were elucidated by analysis of spectroscopic data and chemical methods including alkaline hydrolysis and Mosher's method. Compounds 1 and 2 each attached a dimethyl acetal group at the aromatic ring. A putative biogenetic relationship of the isolated metabolites was presented and suggested that the depsidones and the xanthones probably had the same biosynthetic precursors such as chrysophanol or rheochrysidin. The antimicrobial activity assay indicated that compounds 5, 9, 10, and 14 showed potent activity against Helicobacter pylori with minimum inhibitory concentration (MIC) values in the range of 2.42-36.04 µmol/L. While secalonic acid D (19) demonstrated significant antimicrobial activity against four strains of H. pylori with MIC values in the range of 0.20 to 1.57 µmol/L. Furthermore, secalonic acid D (19) exhibited cytotoxicity against cancer cell lines Bel-7402 and HCT-116 with IC50 values of 0.15 and 0.19 µmol/L, respectively. The structure-activity relationship of depsidone derivatives revealed that the presence of the lactone ring and the hydroxyl at C-10 was crucial to the antimicrobial activity against H. pylori. The depsidone derivatives are promising leads to inhibit H. pylori and provide an avenue for further development of novel antibiotics. Supplementary Information: The online version contains supplementary material available at 10.1007/s42995-023-00170-5.

10.
Front Microbiol ; 14: 1138830, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36922969

RESUMO

Introduction: Dimeric natural products are widespread in plants and microorganisms, which usually have complex structures and exhibit greater bioactivities than their corresponding monomers. In this study, we report five new dimeric tetrahydroxanthones, aculeaxanthones A-E (4-8), along with the homodimeric tetrahydroxanthone secalonic acid D (1), chrysoxanthones B and C (2 and 3), and 4-4'-secalonic acid D (9), from different fermentation batches of the title fungus. Methods: A part of the culture was added to a total of 60 flasks containing 300 ml each of number II fungus liquid medium and culture 4 weeks in a static state at 28˚C. The liquid phase (18 L) and mycelia was separated from the fungal culture by filtering. A crude extract was obtained from the mycelia by ultrasound using acetone. To obtain a dry extract (18 g), the liquid phase combined with the crude extract were further extracted by EtOAc and concentrated in vacuo. The MIC of anaerobic bacteria was examined by a broth microdilution assay. To obtain MICs for aerobic bacteria, the agar dilution streak method recommended in Clinical and Laboratory Standards Institute document (CLSI) M07-A10 was used. Compounds 1-9 was tested against the Bel-7402, A-549 and HCT-116 cell lines according to MTT assay. Results and Discussion: The structures of these compounds were elucidated on the base of 1D and 2D NMR and HR-ESIMS data, and the absolute configurations of the new xanthones 4-8 were determined by conformational analysis and time-dependent density functional theory-electronic circular dichroism (TDDFT-ECD) calculations. Compounds 1-9 were tested for cytotoxicity against the Bel-7402, A549, and HCT-116 cancer cell lines. Of the dimeric tetrahydroxanthone derivatives, only compound 6 provided cytotoxicity effect against Bel-7402 cell line (IC50, 1.96 µM). Additionally, antimicrobial activity was evaluated for all dimeric tetrahydroxanthones, including four Gram-positive bacteria including Enterococcus faecium ATCC 19434, Bacillus subtilis 168, Staphylococcus aureus ATCC 25923 and MRSA USA300; four Gram-negative bacteria, including Helicobacter pylori 129, G27, as well as 26,695, and multi drug-resistant strain H. pylori 159, and one Mycobacterium M. smegmatis ATCC 607. However, only compound 1 performed activities against H. pylori G27, H. pylori 26695, H. pylori 129, H. pylori 159, S. aureus USA300, and B. subtilis 168 with MIC values of 4.0, 4.0, 2.0, 2.0, 2.0 and 1.0 µg/mL, respectively.

11.
J Asian Nat Prod Res ; 25(6): 610-616, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36048769

RESUMO

Alternarialone A (1), one new curvularin derivative, and two known compounds (2 and 3) were isolated from the crude extract of the mangrove-derived fungus Alternaria longipes. Their structures were elucidated by comprehensive spectroscopic analyses, including MS and NMR spectroscopic data. The absolute configuration of 1 was assigned by 13C NMR calculations and a comparison of electronic circular dichroism (ECD) spectra. All compounds were evaluated for their antibacterial activities against Helicobacter pylori. Compounds 2 and 3 showed antibacterial activities against H. pylori G27 with MIC values of 8 and 16 µg/ml, respectively, while compound 3 also displayed antibacterial activity against H. pylori BHKS159 with the MIC value of 16 µg/ml.


Assuntos
Alternaria , Zearalenona , Alternaria/química , Antibacterianos/química , Testes de Sensibilidade Microbiana , Estrutura Molecular
12.
Mar Drugs ; 20(11)2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36421998

RESUMO

Marine fungi-derived secondary metabolites are still an important source for the discovery of potential antimicrobial agents. Here, five new polyketides (1, 2, and 6-8) and seven known compounds (3-5 and 9-12) were obtained from the culture of the marine-derived fungus Trichoderma sp. JWM29-10-1. Their structures were identified by extensive spectrographic data analyses, including 1D and 2D NMR, UV, IR, and HR-ESI-MS. Further, the absolute configurations of new compounds were determined by circular dichroism (CD) spectrum and alkali-hydrolysis in combination with the in situ dimolybdenum CD method. Subsequently, the antimicrobial effects of these isolated compounds were assessed by examining the minimal inhibition concentration (MIC) with the broth microdilution assay. Compounds 1 and 2 exhibited potent antimicrobial activity against Helicobacter pylori, including multidrug-resistant strains, with MIC range values of 2-8 µg/mL. Moreover, compound 1 showed significant inhibitory effects on the growth of Gram-positive pathogens, including methicillin-resistant Staphylococcus aureus (MRSA), Enterococcus faecalis, and vancomycin-resistant Enterococcus faecium, which greatly threaten human health. This study demonstrates that chromone derivatives 1-2, especially for 1, could be potential lead compounds for the development of new antimicrobial agents and provides insight for future medicinal chemistry research.


Assuntos
Anti-Infecciosos , Fontes Hidrotermais , Staphylococcus aureus Resistente à Meticilina , Policetídeos , Trichoderma , Humanos , Policetídeos/farmacologia , Policetídeos/química , Anti-Infecciosos/química
13.
J Nat Prod ; 85(4): 1029-1038, 2022 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-35412828

RESUMO

Seven new naphthoquinone diglycosides (1-7), three new anthraquinones (8-10), and eight known analogues were obtained from the aerial parts of Mitracarpus hirtus collected from West Africa in a bioassay-guided phytochemical investigation. All isolated compounds were elucidated by comparison with the literature and interpretation of spectroscopic data, and the absolute configurations of the new naphthoquinone diglycosides (1-10) were confirmed by chemical methods and ECD calculations. Notably, compound 1 was found to be the first naphthoquinone diglycoside containing carboxylic acid and isopentenyl side chains isolated from a species in the genus Mitracarpus. Compounds 6-18 showed antibacterial activity against multiple Helicobacter pylori strains with MIC values ranging from 0.0625 to 64 µg/mL. Particularly, 1-hydroxybenzoisochromanquinone (17) and benzo[g]isoquinoline-5,10-dione (18), with MIC values of 0.0625 and 0.125 µg/mL, displayed 32-512-fold higher potencies than a positive control, metronidazole. Compound 18 also demonstrated high antibiofilm activity and killed biofilm-encased Helicobacter pylori cells more effectively than metronidazole.


Assuntos
Helicobacter pylori , Naftoquinonas , Rubiaceae , Antibacterianos/farmacologia , Benzoquinonas , Metronidazol/farmacologia , Testes de Sensibilidade Microbiana , Naftoquinonas/farmacologia , Componentes Aéreos da Planta
14.
Chem Biodivers ; 19(6): e202200207, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35419971

RESUMO

Two new austocystin analogs, austocystin P (1) and austocystin Q (2), along with fourteen known compounds (3-16) were isolated from the fermentation extract of Aspergillus sp. WHUF05236. The planar structures of 1 and 2 were elucidated through 1D, 2D NMR and MS analyses. Their absolute configurations were determined by the time-dependent density functional (TDDFT)-ECD calculation. Compounds 3, 11, and 12 exhibited antimicrobial activities against Helicobacter pylori with MIC values ranging from 20.00 to 43.47 µM. Compounds 3, 6, and 7 showed cytotoxicities against the human colon cancer cell lines Hct-116 with IC50 values of 101.79, 65.46, and 36.72 µM, respectively.


Assuntos
Aspergillus , Fungos , Aspergillus/química , Fungos/química , Humanos , Espectroscopia de Ressonância Magnética , Estrutura Molecular
15.
Res Microbiol ; 173(4-5): 103940, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35337986

RESUMO

The phosphopantetheinyl transferases (PPTases) catalyze the post-translational modification of carrier proteins (CPs) from fatty acid synthases (FASs) in primary metabolism and from polyketide synthases (PKSs) and non-ribosomal polypeptide synthases (NRPSs) in secondary metabolism. Based on the conserved sequence motifs and substrate specificities, two types (AcpS-type and Sfp-type) of PPTases have been identified in prokaryotes. We present here that Porphyromonas gingivalis, the keystone pathogen in chronic periodontitis, harbors merely one PPTase, namely PptP. Complementation and gene deletion experiments clearly show that PptP can replace the function of Escherichia coli AcpS and is essential for the growth of P. gingivalis. Purified PptP transfers the 4-phosphopantetheine moiety of CoA to inactive apo-acyl carrier protein (ACP) to form holo-ACP, which functions as an active carrier of the acyl intermediates of fatty acid synthesis. Moreover, PptP exhibits broad substrate specificity, modifying all ACP substrates tested and catalyzing the transfer of coenzyme A (CoA) derivatives. The lack of sequence alignment with known PPTases together with phylogenetic analyses revealed PptP as a new class of PPTases. Identification of the new PPTase gene pptP exclusive in Porphyromonas species reveals a potential target for treating P. gingivalis infections.


Assuntos
Porphyromonas , Transferases (Outros Grupos de Fosfato Substituídos) , Proteína de Transporte de Acila/genética , Proteínas de Bactérias/metabolismo , Coenzima A/química , Coenzima A/genética , Coenzima A/metabolismo , Escherichia coli/metabolismo , Filogenia , Porphyromonas/metabolismo , Transferases (Outros Grupos de Fosfato Substituídos)/genética , Transferases (Outros Grupos de Fosfato Substituídos)/metabolismo
16.
Fitoterapia ; 156: 105095, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34896204

RESUMO

Marine-derived fungi can usually produce structurally novel and biologically potent metabolites. In this study, a new diketopiperazine alkaloid (1) and two new polyketides (10 and 11), along with 8 known diketopiperazine alkaloids (2-9) were isolated from marine-derived fungus Penicillium sp. TW58-16. Their structures were fully elucidated by analyzing UV, IR, HR-ESI-MS, 1D, and 2D NMR spectroscopic data. The absolute configurations of the new compounds 1, 10 and 11 were ascertained by X-ray diffraction (Cu Kα radiation) and comparing their CD data with those reported. In addition, the antibacterial activities of these compounds against Helicobacter pylori in vitro were assessed. Results showed that compounds 3, 6, 8 and 9 displayed moderate antibacterial activity against standard strains and drug-resistant clinical isolates of H. pylori in vitro. This result demonstrates that diketopiperazine alkaloids could be lead compounds to be explored for the treatment of H. pylori infection.


Assuntos
Alcaloides/farmacologia , Antibacterianos/farmacologia , Dicetopiperazinas/farmacologia , Helicobacter pylori/efeitos dos fármacos , Penicillium/química , Policetídeos/farmacologia , Alcaloides/química , Alcaloides/isolamento & purificação , Antibacterianos/química , Antibacterianos/isolamento & purificação , Cromatografia em Gel , Cromatografia Líquida , Cristalografia por Raios X , Dicetopiperazinas/química , Dicetopiperazinas/isolamento & purificação , Espectroscopia de Ressonância Magnética , Rotação Ocular , Policetídeos/química , Policetídeos/isolamento & purificação , Água do Mar , Espectrofotometria Infravermelho , Espectrofotometria Ultravioleta , Espectroscopia de Infravermelho com Transformada de Fourier , Taiwan
17.
Nat Prod Res ; 36(2): 578-585, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32666830

RESUMO

In the course of our efforts to search new secondary metabolites from marine-derived fungi, one new hexylitaconic acid derivative, 3-(5-methoxycarbonylpentyl)-4-methylfuran-2,5-dione (1), and two dimeric analogues asperwelwinates A and B (2 and 3), together with ten known compounds, asperitaconic acid C (4), kotanin (5) and orlandin (6), desertorin B (7), fonsecinone A (8), aurasperone A (9), asperpyrones B and C (10 and 11), aspernigrin B (12), and pyrophen (13), were isolated from a strain of Aspergillus welwitschiae CUGBMF180262. The structures of compounds 1-3 were determined by detailed analysis of HRMS, and 1D/2D NMR experiments, while the absolute configurations of 2 and 3 were determined by comparison of experimental and calculated electronic circular dichroism spectra. 2 and 3 were first reported dimeric hexylitaconic acid derivatives. Compounds 8, 9 and 11 showed moderate antibacterial activities against Helicobacter pylori with minimum inhibitory concentration (MIC) values of 16 µg/mL.


Assuntos
Aspergillus , Fungos , Antibacterianos/farmacologia , Testes de Sensibilidade Microbiana , Estrutura Molecular , Succinatos
18.
Microb Biotechnol ; 15(2): 442-454, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-33780131

RESUMO

Antibiotic resistance in Helicobacter pylori has been growing worldwide with current treatment regimens. Development of new compounds for treatment of H. pylori infections is urgently required to achieve a successful eradication therapy in the future. Armeniaspirols, a novel class of natural products isolated from Streptomyces armeniacus, have been previously identified as antibacterial agents against Gram-positive pathogens. In this study, we found that armeniaspirol A (ARM1) exhibited potent antibacterial activity against H. pylori, including multidrug-resistant strains, with MIC range values of 4-16 µg ml-1 . The underlying mechanism of action of ARM1 against H. pylori involved the disruption of bacterial cell membranes. Also, ARM1 inhibited biofilm formation, eliminated preformed biofilms and killed biofilm-encased H. pylori in a dose-dependent manner. In a mouse model of multidrug-resistant H. pylori infection, dual therapy with ARM1 and omeprazole showed efficient in vivo killing efficacy comparable to the standard triple therapy, and induced negligible toxicity against normal tissues. Moreover, at acidic pH 2.5, ARM1 exhibited a much more potent anti-H. pylori activity than metronidazole. Thus, these findings demonstrated that ARM1 is a novel potent anti-H. pylori agent, which can be developed as a promising drug lead for treatment of H. pylori infections.


Assuntos
Infecções por Helicobacter , Helicobacter pylori , Animais , Antibacterianos/farmacologia , Infecções por Helicobacter/tratamento farmacológico , Infecções por Helicobacter/microbiologia , Metronidazol/farmacologia , Metronidazol/uso terapêutico , Camundongos , Pirróis , Compostos de Espiro
19.
Acta Pharmacol Sin ; 43(3): 735-746, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34183755

RESUMO

As a member of the potassium calcium-activated channel subfamily, increasing evidence suggests that KCNN4 was associated with malignancies. However, the roles and regulatory mechanisms of KCNN4 in PDAC have been little explored. In this work, we demonstrated that the level of KCNN4 in PDAC was abnormally elevated, and the overexpression of KCNN4 was induced by transcription factor AP-1. KCNN4 was closely correlated with unfavorable clinicopathologic characteristics and poor survival. Functionally, we found that overexpression of KCNN4 promoted PDAC cell proliferation, migration and invasion. Conversely, the knockdown of KCNN4 attenuated the growth and motility of PDAC cells. In addition to these, knockdown of KCNN4 promoted PDAC cell apoptosis and led to cell cycle arrest in the S phase. In mechanistic investigations, RNA-sequence revealed that the MET-mediated AKT axis was essential for KCNN4, encouraging PDAC cell proliferation and migration. Collectively, these findings reveal a function of KCNN4 in PDAC and suggest it's an attractive therapeutic target and tumor marker. Our studies underscore a better understanding of the biological mechanism of KCNN4 in PDAC and suggest novel strategies for cancer therapy.


Assuntos
Carcinoma Ductal Pancreático/patologia , Canais de Potássio Ativados por Cálcio de Condutância Intermediária/metabolismo , Neoplasias Pancreáticas/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-met/metabolismo , Animais , Apoptose/fisiologia , Biomarcadores Tumorais , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Técnicas de Silenciamento de Genes , Humanos , Camundongos , Fator de Transcrição AP-1/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , Neoplasias Pancreáticas
20.
Nat Commun ; 12(1): 6932, 2021 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-34836944

RESUMO

Unsaturated fatty acids (UFAs) are essential for functional membrane phospholipids in most bacteria. The bifunctional dehydrogenase/isomerase FabX is an essential UFA biosynthesis enzyme in the widespread human pathogen Helicobacter pylori, a bacterium etiologically related to 95% of gastric cancers. Here, we present the crystal structures of FabX alone and in complexes with an octanoyl-acyl carrier protein (ACP) substrate or with holo-ACP. FabX belongs to the nitronate monooxygenase (NMO) flavoprotein family but contains an atypical [4Fe-4S] cluster absent in all other family members characterized to date. FabX binds ACP via its positively charged α7 helix that interacts with the negatively charged α2 and α3 helices of ACP. We demonstrate that the [4Fe-4S] cluster potentiates FMN oxidation during dehydrogenase catalysis, generating superoxide from an oxygen molecule that is locked in an oxyanion hole between the FMN and the active site residue His182. Both the [4Fe-4S] and FMN cofactors are essential for UFA synthesis, and the superoxide is subsequently excreted by H. pylori as a major resource of peroxide which may contribute to its pathogenic function in the corrosion of gastric mucosa.


Assuntos
Proteínas de Bactérias/ultraestrutura , Ácidos Graxos Insaturados/biossíntese , Helicobacter pylori/enzimologia , Proteínas Ferro-Enxofre/ultraestrutura , Oxigenases de Função Mista/ultraestrutura , Proteína de Transporte de Acila/metabolismo , Proteína de Transporte de Acila/ultraestrutura , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Domínio Catalítico/genética , Cristalografia por Raios X , Helicobacter pylori/genética , Proteínas Ferro-Enxofre/genética , Proteínas Ferro-Enxofre/metabolismo , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...